Diophantine Equations in Partitions

By Hansraj Gupta

Abstract. Given positive integers $r_1, r_2, r_3, \ldots, r_l$ such that

 $r_1 < r_2 < r_3 < \cdots < r_l < m; \quad m > 1;$

we find the number P(n, m; R) of partitions of a given positive integer n into parts belonging to the set R of residue classes

 $r_1 \pmod{m}$, $r_2 \pmod{m}$, \dots , $r_j \pmod{m}$.

This leads to an identity which is more general though less elegant then the well-known Rogers-Ramanujan identities.

1. Notation. In what follows, small letters other than x denote nonnegative integers; |x| < 1; the parts in a partition are deemed to be arranged in a nonascending order unless otherwise clear from the context; p(u, v) denotes the number of partitions of u into at most v parts, with p(0, v) = 1; square brackets denote the greatest integer function; m > 1; and we write

$$X(a_i)$$
 for $1/((1-x)(1-x^2)\cdots(1-x^{a_i}))$ with $X(0) = 1$.

2. The Problem. Given m > 1, and integers $r_1, r_2, r_3, \ldots, r_i$ such that

 $0 < r_1 < r_2 < \cdots < r_i < m;$

we have to find the number P(n, m; R) of partitions of a given number n into parts belonging to the set R of residue classes

 $r_1 \pmod{m}, r_2 \pmod{m}, \ldots, r_i \pmod{m}$

if any such exist.

Let us first consider the set of those partitions of n which have

 a_1 parts each congruent to $r_1 \pmod{m}$, a_2 parts each congruent to $r_2 \pmod{m}$, a_j parts each congruent to $r_j \pmod{m}$.

For n to have such a partition, it is necessary that

(1)
$$n = r_1 a_1 + r_2 a_2 + \cdots + r_j a_j + Cm$$

for some integer $C \ge 0$.

Any partition belonging to our set can be considered to have j sections—the first consisting of $a_1 r_1$'s, the second of $a_2 r_2$'s;..., and the j th of $a_j r_j$'s.

Received June 21, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 10A45, 10B05; Secondary 05A17.

To get a partition of *n* of the desired type, we must distribute the *C m*'s between the *j* sections in all possible ways. Let c_1 *m*'s be allotted to the first section, c_2 to the second section,..., and c_j to the *j*th section.

Since the elements of each section are all alike, the c_i m's assigned to the *i*th section are partitioned into at most a_i parts which are then tagged on to the elements of the section in order. Thus the number of partitions to which the allotment leads is given by

(2)
$$p(c_1, a_1) \cdot p(c_2, a_2) \cdot p(c_3, a_3) \cdots p(c_l, a_l).$$

Letting c_1, c_2, \ldots, c_j run through all the $\binom{C+j-1}{j-1}$ solutions of the Diophantine equation

(3)
$$c_1 + c_2 + c_3 + \dots + c_r = C$$

in nonnegative integers, we can not only find the number of partitions in our set but can also write them out. We do this in the following example with

$$m = 11; r_1 = 2, r_2 = 6, r_3 = 8, r_4 = 10;$$

 $a_1 = 5, a_2 = 2, a_3 = 1, a_4 = 1;$ and $C = 3;$

which implies that n = 73.

The Diophantine equation

$$c_1 + c_2 + c_3 + c_4 = 3$$

has 20 solutions. We present them in the following table along with the partitions to which they give rise and their number.

	°ı	°2	°3	сų	Partitions	Number
1.	3	0	0	0	35. 2. 2. 2. 2; 6. 6; 8; 10; 24.13. 2. 2. 2; 6. 6; 8; 10; 13.13113. 2. 2; 6. 6; 8; 10;	3
2.	0	3	0	0	2, 2, 2, 2, 2, 39, 6; 8; 10; 2, 2, 2, 2, 2, 2;28,17; 8; 10;	2
3. 4. 5.	0 0 2	0 0 1	3 C 0	0 3 0	2, 2, 2, 2, 2, 2, 6, 6; 41; 10; 2, 2, 2, 2, 2, 6, 6; 8; 43; 24, 2, 2, 2, 2, 2;17, 6; 8; 10; 13,13, 2, 2, 2;17, 6; 8; 10;	1 1 2
6.	2	0	1	0	24, 2, 2, 2, 2; 6, 6; 19; 10; 13,13, 2, 2, 2; 6, 6; 19; 10;	2
7.	2	0	0	1	24, 2, 2, 2, 2, 2; 6, 6; 8; 21; 13,13, 2, 2, 2; 6, 6; 8; 21;	2
8.	1	2	0	0	13, 2, 2, 2, 2, 2, 2 ⁸ , 6; 8; 10; 13, 2, 2, 2, 2; 17,17; 8; 10;	2
9.	0	2	1	0	2, 2, 2, 2, 2, 2;2 ^p , 6; 19; 10; 2, 2, 2, 2, 2;17,17; 19; 10;	2
10.	0	2	0	1	2, 2, 2, 2, 2, 2;2 ⁸ , 6; 8; 21; 2, 2, 2, 2, 2, 2;17,17; 8; 21;	2
11. 12. 13. 14. 15. 16. 17. 18. 19. 20.	0 0 1 0 1 1 1 0	0 1 0 1 0 1 0 1 2 1	2 2 2 1 0 1 0 1 0 1	1 0 2 2 2 0 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

226

Thus the required number of partitions in the set is 29. A formula for the number of partitions in the set is obtained as follows. We note that $p(c_i, a_i)$ is the coefficient of x^{c_i} in the expansion of $X(a_i)$. Hence

$$\sum_{c} p(c_1, a_1) \cdot p(c_2, a_2) \cdot \cdots \cdot p(c_j, a_j),$$

where c's run over all the solutions of the Diophantine equation (3), is the coefficient of x^{C} in the expansion (in ascending powers of x) of the product

$$X(a_1) \cdot X(a_2) \cdot X(a_3) \cdot \cdots \cdot X(a_n).$$

This is the same as the coefficient of x^{C} in

(4)
$$X(b_1) \cdot X(b_2) \cdot X(b_3) \cdot \cdots \cdot X(b_i)$$
, where

(5)
$$b_i = \min(C, a_i), \quad i = 1, 2, 3, \dots, j.$$

In our example, it is the coefficient of x^3 in

$$X(3) \cdot X(2) \cdot X(1) \cdot X(1)$$

We leave it to the reader to verify that the coefficient is 29.

3. The Formula for P(n, m; R). We have seen that

(6)
$$r_1a_1 + r_2a_2 + r_3a_3 + \cdots + r_ja_j = n - Cm.$$

In this let C take in succession the values 0, 1, 2, ..., [n/m]. For each of these values, regarding (6) as a Diophantine equation in a's, find all the solutions of (6) and the contribution of each such solution to P(n, m; R). Then we get

(7)

$$P(n, m; R) = \text{the sum of these contributions;}$$

$$= \sum_{C=0}^{\lfloor n/m \rfloor} \text{ coefficient of } x^C \text{ in } X(a_1) X(a_2) \cdots X(a_j),$$

where each $a_i > C$ can be replaced by C.

The following examples will show how the calculations can best be presented. Example 1. Let m = 5, $r_1 = 2$, $r_2 = 3$ and n = 25. Our presentation will be as follows:

By the second Rogers-Ramanujan identity, we will have

$$P(25,5;2,3) = p(23,1) + p(19,2) + p(13,3) + p(5,4),$$

= 1 + 10 + 21 + 6 = 38.

Before we consider our next example, let it be recalled that the number of solutions of (6) is the coefficient of x^{n-Cm} in

(8)
$$((1-x^{r_1})(1-x^{r_2})(1-x^{r_3})\cdots (1-x^{r_j}))^{-1}$$

We leave it to the reader to verify this in the above example.

Example 2. Let m = 7; r = 1, r = 2, r = 4; n = 25. In this case (8) gives the following information:

<i>C</i> :	0	1	2	3
Number of solutions:	49	30	12	4.

Our calculations are a little more elaborate this time.

C	a 1	a 2	a 3	^b 1	^b 2	ъ3	P	C	;	a 1	a 2	a3	^b 1	^b 2	ъ3	P
0	1 5 3 1 9 7 5 3 1 13	0 0 1 2 0 1 2 3 4 0	6 5 5 5 4 4 4 4 4 3	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0		1 1 1 1 1 1 1 1 1 1]	L	206420 10864	0 1 2 3 0 1 2 3	4433332222	1 0 1 1 0 1 1 1	0 1 1 1 1 0 1 1	1 1 1 1 1 1 1 1 1	2223322333
	11 9 7 3 1 17 15 13 11	1234560123	3 333322222	0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	1 1 1 1 1 1 1 1			2 0 14 12 10 8 6 4 2 0	4501234567	2 2 1 1 1 1 1 1	1 0 1 1 1 1 1 0	1 0 1 1 1 1 1	1 1 1 1 1 1 1	72277777
	9 5 3 1 21 19 17 15 13	4567801234	2 2 2 2 2 1 1 1 1	0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	1 1 1 1 1 1 1 1	-		18 16 14 12 10 8 6 4 2 0	0 1 2 3 4 5 6 7 8 9	0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 0	0 1 1 1 1 1 1 1		122222222222222222222222222222222222222

0 continues on next page

с 	^a 1	a 2	a 3	bl	^b 2	ъ3	P	с	a 1	a 2	a3	ъı	^b 2	^b 3	P
	11 9 7 5 3 1 25 23 21 19	5 6 7 8 9 10 0 1 2 3	1 1 1 1 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	1 1 1 1 1 1 1 1 1 1	2	3 1 5 3 1 19 7 5	0 1 0 1 2 3 0 1 2 3	2 2 1 1 1 0 0 0 0	2 1 2 2 2 1 2 2 2 2 2	0 1 0 1 2 2 0 1 2 2	2 2 1 1 1 1 0 0 0 0	5747872455
	17 15	45	0	0	0	0	1		3 1	4 5	0 0	2 1	2 2,	0 0	5 4
	1) 11 9 7 5	0 7 8 9 10	000000000000000000000000000000000000000	00000	00000	00000	1 1 1 1	3	0 4 2 0	0 0 1 2	1 0 0 0	0 3 2 0	0 0 1 2	1 0 0 0	1 3 6 2
		12	_0	_ <u>0</u>	_0	_0	<u>_1</u> _		 P	(25,	7;1,	2,4)		=]	.94

To check our result, we make use of the well-known fact that P(n, m; R) is the coefficient of x^n in the expansion of

(9)
$$\prod_{q=0}^{[n/m]} \left\{ \prod_{i=1}^{j} (1 - x^{r_i + qm}) \right\}^{-1}.$$

In our example (9) is

$$\left\{ (1-x)(1-x^2)(1-x^4) \cdot (1-x^8)(1-x^9)(1-x^{11}) \\ \cdot (1-x^{15})(1-x^{16})(1-x^{18}) \cdot (1-x^{22})(1-x^{23})(1-x^{25}) \right\}^{-1} .$$

Expanding this, we obtained the following table of coefficients of x^n , $0 \le n \le 25$.

n	0	1	2	3	4	5	6	7	8	9
0	1	1	2	2	4	4	6	6	10	11
1	15	17	23	26	32	37	47	54	66	76
2	93	105	126	143	172	194				

Incidentally, equating the results in (7) and (9), we get an identity which is more general but not as elegant as the well-known Rogers-Ramanujan identities.

Department of Mathematics Panjab University Chandigarh 160014, India